Part Number Hot Search : 
167BZXC MCD56 A504ERW 001456 K6A60D IRF9632 01500 D8407N
Product Description
Full Text Search
 

To Download GB15RF120K Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 94571
GB15RF120K
IGBT PIM MODULE
Features
* Low VCE (on) Non Punch Through IGBT Technology * Low Diode VF * 10s Short Circuit Capability * Square RBSOA * HEXFRED Antiparallel Diode with Ultrasoft Diode Reverse Recovery Characteristics * Positive VCE (on) Temperature Coefficient * Ceramic DBC Substrate * Low Stray Inductance Design
VCES = 1200V IC = 15A, TC=80C tsc > 10s, TJ=150C
ECONO2 PIM
VCE(on) typ. = 2.55V
Benefits
* Benchmark Efficiency for Motor Control * Rugged Transient Performance * Low EMI, Requires Less Snubbing * Direct Mounting to Heatsink * PCB Solderable Terminals * Low Junction to Case Thermal Resistance * UL Listed
Absolute Maximum Ratings (TJ =25C, unless otherwise indicated)
Parameter
Inverter Collector-to-Emitter Voltage Gate-to-Emitter Voltage Collector Current Diode Maximum Forward Current Power Dissipation Input Repetitive Peak Reverse Voltage Surge Current (Non Repetitive) I t (Non Repetitive) Brake Collector-to-Emitter Voltage Gate-to-Emitter Voltage Collector Current Power Dissipation Repetitive Peak Reverse Voltage Maximum Operating Junction Temperature Storage Temperature Range Isolation Voltage
2
Symbol
VCES VGES IC ICM IFM d PD VRRM IF(AV) IFSM It VCES VGES IC ICM PD VRRM TJ TSTG VISOL
2
Test Conditions
Ratings
1200 20
Units
V
Continuous
25C / 80C 25C 25C
25 / 15 50 50 125 1600 15 120 72 1200 20 As V A W V C V
2
A W V A
1 device 50/60Hz sine pulse sine pulse
25C 80C
Rectifier Average Output Current
Rated VRRM applied,10ms,
Continuous 1 device
25C / 80C 25C 25C
15 / 7.5 30 83 1200 150 -40 to +125
AC (1min.)
2500
Thermal and Mechanical Characteristics
Parameter
Junction-to-Case Inverter IGBT Thermal Resistance Junction-to-Case Inverter FRED Thermal Resistance Junction-to-Case Brake IGBT Thermal Resistance Junction-to-Case Diode Thermal Resistance Junction-to-Case Input Rectifier Thermal Resistance Mounting Torque (M5) RTHJC
Symbol
Min
-- -- -- -- -- 2.7
Typical
-- -- -- -- -- --
Maximum
1.0 1.6 1.5 2.3 1.0 3.3
Units
C/W
Nm
1
www.irf.com
10/18/02
GB15RF120K
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Inverter IGBT BVCES Collector-to-Emitter Breakdown Voltage V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Voltage
Min. Typ. Max. Units
1200 -- -- -- -- -- -- 1.1 2.55 3.15 3.05 3.85 5.0 -11 8 370 -- 95 10 45 1300 900 2200 1700 1250 2950 50 50 300 220 1285 280 35 -- -- 2.80 3.50 -- -- 6.0 -- 50 -- 200 145 15 70 2300 1550 3850 2850 1900 4750 65 70 540 286 -- -- -- pF VGE = 0V VCC = 30V ns J J nC nA V V/C V
Conditions
VGE = 0V, IC = 500A VGE = 0V, IC = 1mA (25C-125C) IC = 15A, VGE = 15V IC = 25A, VGE = 15V IC = 15A, VGE = 15V, TJ = 125C IC = 25A, VGE = 15V, TJ = 125C VCE = VGE, IC = 250A
Ref. Fig
1,2 4,5
VGE(th) VGE(th) ICES IGES Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA
Gate Threshold Voltage Threshold Voltage temp. coefficient Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area
4.0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
3,4,5
mV/C VCE = VGE, IC = 1mA (25C-125C) VGE = 0V, VCE = 1200V A VGE = 0V, VCE = 1200V, TJ = 125C VGE = 20V IC = 15A VCC = 400V VGE = 15V IC = 15A, VCC = 600V VGE = 15V, RG = 22, L = 400H TJ = 25C
CT4 7 CT1
e
IC = 15A, VCC = 600V VGE = 15V, RG = 22, L = 400H TJ = 125C
9,11 CT4 WF1,2 10,12 CT4 WF1 WF2
e
IC = 15A, VCC = 600V VGE = 15V, RG = 22, L = 400H TJ = 125C
6
FULL SQUARE
f = 1Mhz TJ = 150C, IC = 50A RG = 22, VGE = +15V to 0V TJ = 150C
CT2
CT3
SCSOA Inverter FRED Irr
Short Circuit Safe Operating Area
10
--
--
s
VCC = 900V, VP = 1200V RG = 22, VGE = +15V to 0V TJ = 125C
13,14,15 CT4
Diode Peak Reverse Recovery Current
-- --
22 2.15 2.60 2.30 2.90
-- 2.55 3.05 -- --
A V
VCC = 600V, IF = 15A, L = 400H VGE = 15V, RG = 22 IF = 15A IF = 25A IF = 15A, TJ = 125C IF = 25A, TJ = 125C
VFM
Diode Forward Voltage Drop
-- -- --
8
2
www.irf.com
GB15RF120K
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Input VFM Maximum Forward Voltage Drop Maximum Reverse Leakage Current Forward Slope Resistance Conduction Threshold Voltage Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Rectifier IRM rT VF(TO) Brake IGBT BVCES VCE(on)
Min. Typ. Max. Units IF = 15A -- -- 1.3 V
-- -- -- -- 1200 -- -- -- -- -- -- -- -- -- -- 1.5 2.35 3.10 2.75 3.80 5.0 -10 8 350 -- 55 24 7 700 350 1050 975 525 1500 50 45 365 135 740 95 20 0.05 1.0 16.4 0.77 -- -- 2.50 3.30 -- -- 6.0 -- 50 -- 200 85 40 15 800 450 1250 1150 900 2050 65 65 400 180 -- -- -- pF VGE = 0V VCC = 30V ns J J nC nA m V V V/C mA
Conditions
Ref. Fig
17
TJ = 25C, VR = 1600V TJ = 150C, VR = 1600V TJ = 150C VGE = 0V, IC = 500A VGE = 0V, IC = 1mA (25C-125C) IC = 7.5A, VGE = 15V IC = 15A, VGE = 15V IC = 7.5A, VGE = 15V, TJ = 125C IC = 15A, VGE = 15V, TJ = 125C VCE = VGE, IC = 250A
22,23,24
20,21 23,24
V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage
VGE(th) VGE(th) ICES IGES Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA
Gate Threshold Voltage Threshold Voltage temp. coefficient Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area
4.0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
mV/C VCE = VGE, IC = 1mA (25C-125C) VGE = 0V, VCE = 1200V A VGE = 0V, VCE = 1200V, TJ = 125C VGE = 20V IC = 7.5A VCC = 600V VGE = 15V IC = 7.5A, VCC = 600V VGE = 15V, RG = 47, L = 200H TJ = 25C
CT4 26 CT1
e
IC = 7.5A, VCC = 600V VGE = 15V, RG = 47, L = 200H TJ = 125C
28,30 CT4 WF3,4 29,31 CT4 WF3 WF4
e
IC = 7.5A, VCC = 600V VGE = 15V, RG = 47, L = 200H TJ = 125C
25
FULL SQUARE
f = 1Mhz TJ = 150C, IC = 30A RG = 47, VGE = +15V to 0V TJ = 150C
CT2
CT3
SCSOA Brake Diode Irr
Short Circuit Safe Operating Area Diode Peak Reverse Recovery Current
10 -- --
-- 13 1.90 2.40 2.00 2.65 5000 3375
-- -- 2.10 2.70 -- -- 5495 3443
s A V
VCC = 900V, VP = 1200V RG = 47, VGE = +15V to 0V VCC = 600V, IF = 7.5A, L = 400H VGE = 15V, RG = 47, TJ = 125C IF = 7.5A IF = 15A IF = 7.5A, TJ = 125C IF = 15A, TJ = 125C
27
32,33,34 CT4
VFM
Diode Forward Voltage Drop
-- -- --
NTC
R B
Resistance B Value
4538 3307
K
TJ = 25C TJ = 100C TJ = 25 / 50 C
16
468.6 493.3 518.0
Note: For UL Application, TJ is limited to +125C (See File 78996). Power dependent on temperature. TJ not to exceed TJMAX Energy losses include "tail" and diode reverse recovery.
www.irf.com
3
GB15RF120K
Inverter
50 45 40 35
ICE (A)
50
ICE (A)
30 25 20 15 10 5 0 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
45 40 35 30 25 20 15 10 5 0 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
1
2
3 VCE (V)
4
5
6
1
2
3 VCE (V)
4
5
6
Fig. 1 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s
180 160 140 120 100 80 60 40 20 0 0 2 4 6 8 10 12 14 16 18 20 VGE (V)
VCE (V) ICE (A)
Fig. 2 - Typ. IGBT Output Characteristics TJ = 125C; tp = 80s
20
TJ = 25C TJ = 125C
18 16 14 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 ICE = 7.5A ICE = 15A ICE = 30A
Fig. 3 - Typ. Transfer Characteristics VCE = 50V; tp = 10s
20 18 16
10000
Fig. 4 - Typical VCE vs. VGE TJ = 25C
Capacitance (pF)
14
VCE (V)
1000
Cies
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 7.5A ICE = 15A ICE = 30A
Coes
100
Cres
10
15
20
0
20
40
60
80
100
VCE (V)
Fig.5 - Typical VCE vs. VGE TJ = 125C
Fig. 6- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
4
www.irf.com
GB15RF120K
Inverter
16 14 12 10
VGE (V)
50 45
400V 600V
40 35 30
IF (A)
25C 125C
8 6 4 2 0 0 20 40 60 80 100 Q G , Total Gate Charge (nC)
25 20 15 10 5 0 0.0 1.0 2.0 VF (V) 3.0 4.0
Fig. 7 - Typical Gate Charge vs. VGE ICE = 15A; L = 1.0mH
4000 3500 3000
Energy (J)
Fig. 8 - Typ. Diode Forward Characteristics tp = 80s
1000
EON
td OFF
2500 2000 1500 1000 500 0 0 10 20 IC (A) 30 40 EOFF
Swiching Time (ns)
tF
100
tR tdON
10 0 10 20 30 40
IC (A)
Fig. 9 - Typ. Energy Loss vs. IC TJ = 125C; L=400H; VCE= 600V,RG= 22; VGE= 15V
2500
Fig. 10 - Typ. Switching Time vs. IC TJ = 125C; L=400H; VCE= 600V,RG= 22;VGE= 15V
1000
2000
EON tF
Swiching Time (ns)
Energy (J)
1500
td OFF
100
EOFF
1000
tdON tR
500
0 0 10 20 30 40 50
10 0 10 20 30 40 50
RG ()
RG ()
Fig. 11 - Typ. Energy Loss vs. RG TJ = 125C; L=400H; VCE= 600V, ICE= 15A; VGE= 15V
Fig. 12- Typ. Switching Time vs. RG TJ = 125C; L=400H; VCE= 600V, ICE= 15A; VGE= 15V
www.irf.com
5
GB15RF120K
40 35 30 25
Inverter
30
RG = 4.7
25
R G = 10
20
IRR (A)
20 15 10
IRR (A)
40
RG = 22 RG = 47
15
10
5 5 0 0 10 20 30 0 0 10 20 30 40 50
IF (A)
RG ()
Fig. 13 - Typical Diode IRR vs. IF TJ = 125C
30
Fig. 14 - Typical Diode IRR vs. RG TJ = 125C; IF = 15A
Thermistor
14 12
Thermistor Resistance ( k)
10 8 6 4 2
20
IRR (A)
10
0 0 200 400 600 800 1000 1200
0 0 20 40 60 80 100 120 140 160 180
diF /dt (A/s)
T J , Junction Temperature (C)
Fig. 15- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; ICE= 15A; TJ = 125C
90
Instantaneous Forward Current - I F ( A )
Fig. 16 - Thermistor Resistance vs. Temperature
Input Rectifier
80 70 60 50 40 30 20 10 0 0.0 0.5 1.0 1.5 2.0 2.5 Forward Voltage Drop - V F ( V ) T J = 125C T J = 25C
Fig. 17- Typ. Diode Forward Characteristics tp = 80s
6
www.irf.com
Inverter
10
GB15RF120K
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.01
0.20 0.10 0.05 0.01 0.02
J
R1 R1 J 1 2
R2 R2
R3 R3 3
R4 R4 C 4
Ri (C/W)
0.0278 0.2384 0.5767 0.1577
i (sec)
0.000031 0.000351 0.019118 0.037775
1
2
3
4
Ci= i/Ri Ci i/Ri
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.0001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.01 0.02
0.1
J
R1 R1 J 1 2
R2 R2
R3 R3 3 C 3
Ri (C/W) i (sec) 0.210 0.000122 0.535 0.855 0.001273 0.037089
1
2
0.01
Ci= i/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-6 1E-5 1E-4 1E-3 1E-2
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-1 1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter FRED)
900 800 700 600 500 VCE (V) 400 300
5% V CE
18 tf
90% ICE
900 800
tr
45 40 35
TEST CURRENT
16 14 12 10
VCE (V)
700 600 500
30 25 20 15 ICE (A)
90% test current
ICE (A)
8 6 4
5% ICE
400 300 200 100 0 -100 9.40
Eon Loss 10% test current 5% V CE
200 100 0
Eoff Loss
10 5 0
2 0 -2 2.40
-100 -0.60
0.40
1.40
9.60
-5 9.80 10.00 10.20 10.40 Time (s)
Time(s)
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 125C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 125C using Fig. CT.4
www.irf.com
7
GB15RF120K
Brake
50 45 40 35
ICE (A)
50
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
45 40 35
ICE (A)
30 25 20 15 10 5 0 0
30 25 20 15 10 5 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
1
2
3 VCE (V)
4
5
6
0
1
2
3 VCE (V)
4
5
6
Fig. 20 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s
100 TJ = 25C 80 TJ = 125C
Fig. 21 - Typ. IGBT Output Characteristics TJ = 125C; tp = 80s
20 18 16 14
ICE (A)
VCE (V)
60
12 10 8 6
ICE = 3.75A ICE = 7.5A ICE = 15A
40
20
4 2
0 0 2 4 6 8 10 12 14 16 18 20 VGE (V)
0 5 10 VGE (V) 15 20
Fig. 22 - Typ. Transfer Characteristics VCE = 50V; tp = 10s
20 18 16 14
10000
Fig. 23 - Typical VCE vs. VGE TJ = 25C
Capacitance (pF)
1000
VCE (V)
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 3.75A ICE = 7.5A ICE = 15A
Cies
100
Coes
Cres
15 20
10 0 20 40 60 80 100
Fig.24- Typical VCE vs. VGE TJ = 125C
VCE (V)
Fig. 25- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
8
www.irf.com
GB15RF120K
Brake
16 14 400V 12 10
VGE (V)
50 45 25C 125C
600V
40 35 30
IF (A)
8 6 4 2 0 0 25 50 75 Q G , Total Gate Charge (nC)
25 20 15 10 5 0 0.0 1.0 2.0 3.0 4.0 5.0 VF (V)
Fig. 26 - Typical Gate Charge vs. VGE ICE = 7.5A; L = 1.0mH
3000 2500 EON
Fig. 27 - Typ. Diode Forward Characteristics tp = 80s
1000
tdOFF
1500 EOFF 1000 500 0 0 10 IC (A) 20 30
Swiching Time (ns)
2000
Energy (J)
100
tF tR tdON
10 0 10 20 30
IC (A)
Fig. 28 - Typ. Energy Loss vs. IC TJ = 125C; L=400H; VCE= 600V,RG= 47; VGE= 15V
1200
Fig. 29 - Typ. Switching Time vs. IC TJ = 125C; L=400H; VCE= 600V,RG= 47;VGE= 15V
1000
1000
EON
800
Swiching Time (ns)
tdOFF
Energy (J)
600
100
tF tdON tR
EOFF
400
200
0 0 50 100 150
10 0 50 100 150
R G ()
RG ()
Fig. 30 - Typ. Energy Loss vs. RG TJ = 125C; L=400H; VCE= 600V, ICE= 8.0A; VGE= 15V
Fig. 31 - Typ. Switching Time vs. RG TJ = 125C; L=400H; VCE= 600V, ICE= 8.0A; VGE= 15V
www.irf.com
9
GB15RF120K
45 40 35 30
Brake
25
20
IRR (A)
25 20 15 10 5 0 0
IRR (A)
20 30 40
RG = 10
15
RG = 22 RG = 47 RG = 100
10
5
0 10 0 50 100 150
IF (A)
RG ()
Fig. 32 - Typical Diode IRR vs. IF TJ = 125C
25
Fig. 33- Typical Diode IRR vs. RG TJ = 125C; IF = 7.5A
20
IRR (A)
15
10
5
0 0 200 400 600 800 1000 1200
diF /dt (A/s)
Fig. 34- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; ICE= 7.5A; TJ = 125C
10
www.irf.com
Brake
10
GB15RF120K
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
0.1
0.01
0.05 0.01 0.02
J
R1 R1 J 1 2
R2 R2
R3 R3 3 C 3
Ri (C/W) i (sec) 0.404 0.000545 0.714 0.382 0.015291 0.122321
1
2
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.0001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 35. Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
0.1
0.05 0.01 0.02
J
R1 R1 J 1 2
R2 R2
R3 R3 3 C 3
Ri (C/W) i (sec) 0.560 0.000301 0.749 0.991 0.005573 0.049496
1
2
0.01
Ci= i/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-6 1E-5 1E-4 1E-3 1E-2
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-1 1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 36. Maximum Transient Thermal Impedance, Junction-to-Case (Brake Diode)
900 800 700 600 500 VCE (V) 400 300
5% V CE
18 tf
90% ICE
900 800
tr
45 40 35
TEST CURRENT
16 14 12 10
VCE (V)
700 600 500
30 25 20 15 ICE (A)
ICE (A)
90% test current
8 6 4
5% ICE
400 300 200 100 0 -100 10.00
Eon Loss 10% test current 5% V CE
200 100 0
Eoff Loss
10 5 0
2 0 -2 2.40
-100 -0.60
0.40
1.40
10.20
10.40 Time (s)
10.60
-5 10.80
Time(s)
Fig. WF3- Typ. Turn-off Loss Waveform @ TJ = 125C using Fig. CT.4
Fig. WF4- Typ. Turn-on Loss Waveform @ TJ = 125C using Fig. CT.4
www.irf.com
11
GB15RF120K
L
L DUT
0
VCC
80 V Rg
DUT
1000V
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
Driver
D C
diode clamp / DUT
L
900V
- 5V DUT / DRIVER
Rg
VCC
DUT
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
12
www.irf.com
GB15RF120K
Econo2 PIM Package Outline
Dimensions are shown in millimeters (inches)
0.25 [.0098] CONVEX
Econo2 PIM Part Marking Information
Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/02
www.irf.com
13


▲Up To Search▲   

 
Price & Availability of GB15RF120K

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X